Ribuktse Glacier Retreat, Tibet, China 1991-2014

Ribuktse Glacier drains east from 6200 m peaks along the Nepal-China border. The glacier ends in a lake that drains into Ribuktse Tso, the Yarlung Tsangpo (Zangbo), which becomes the Brahmaputra River. The Zangmu hydropower project is being constructed on the river, it is a 510 MW project. Here we examine Landsat and Google Earth imagery from the 1991-2014 period. This is a region where Li et al (2011) noted that increasing temperature, especially at altitude, the fronts of 32 glaciers have retreated, mass losses of 10 glaciers have been considerable, glacial lakes in six regions have expanded and melt water discharge of four basins has also increased. Neckel et al (2014) examined changes in surface elevation of the glaciers and found this region lost 0.44 m/year from 2003 to 2009.

ribuktse 2005
Google Earth image

In 1991 the glacier ends in a proglacial lake at the red arrow, the yellow arrow is the 201 terminus. The lake at an elevation of 5050 m is 1.1 km long and 600 m wide. The purple arrow indicates two tributaries that connect to the larger valley glaciers. By 1998 the lake has expanded. The tributary to the glacier to the north of Ribuktse has separated from the main glacier. In 2000 and 2001 the tributary to the Ribuktse Glacier is still connected to the main glacier. The terminus continues to retreat with lake expansion. By 2005 the lake is 1.8 km long and the tributary is no longer visibly in contact with the main glacier at the purple arrow. In 2014 the terminus has retreated 800 m since 1991, the lake is 1.9 to 2 km long and the tributary has significantly separated form the main glacier. At the glacier just to the north the tributary separation from the valley glacier has led to a new glacier lake developing by 2011. There is little evidence of calving from Ribuktse Glacier. The retreat of the low slope glacier tongue in the proglacial lake lacking calving will continue at a slow rate. The high elevation of the glacier terminus area limits the magnitude of ablation on the glacier tongue. The retreat follows the pattern of the Yemayndrung Glacier just to the south, Durung Drung Glacier, India, Reqiang Glacier, China and Matsang Tsanpo Glacier, China which are in a similar climate setting. This area did get an unusual heavy October snowfall from Cyclone Hudhud this week.

ribukste 1991
1991 Landsat image

ribuktse 1998
1998 Landsat image
ribukste 2000
2000 Landsat image
ribuktse 2001
2001 Landsat image

2005 Google Earth image
ribukste 2014
2014 Landsat image

ribuktse north 2011
2011 Google Earth image

Yemayundrung Glacier Retreat, Tibet, China

The Yemayundrung Glacier flows northeast from the Nepal-China border to end in lake at the headwaters of the Khugpi Chu River. This river is one of the source rivers of the Yarlung Tsangpo (Zangbo) in China which becomes the Brahmaputra in India. This is a region where Li et al (2011) noted that increasing temperature, especially at altitude, the fronts of 32 glaciers have retreated, mass losses of 10 glaciers have been considerable, glacial lakes in six regions have expanded and melt water discharge of four basins has also increased. This is further documented by an inventory of 308 glaciers in the Nam Co Basin, Tibet, where an increased loss of area for the 2001-2009 period, 6% area loss (Bolch et al., 2010) was observed. Here we examine Landsat imagery of changes in this glacier from 1998 to 2014.

yemaundrung ge

In each image the yellow arrow indicates the 1998 terminus and the red arrow the 2014 terminus. The purple arrows indicate a pair of tributary glaciers from the south and the green arrow a tributary after it has joined the main glacier separated by a lateral moraine. In 1998 the glacier terminates at the yellow arrow and the maximum length of the proglacial lake at the terminus is 1 km. The two tributaries from the south join the main glacier. The tributary at the green arrow has a blue ice tongue that extends down glacier to the main glacier junction. In 2000 the terminus has retreated a short distance, but there is little change in the tributaries. By 2013 the lake has lengthened to 1.8 km with glacier retreat. In 2014 the two southern tributaries at the purples arrows no longer connect to the main glacier. The tributary at the green arrow no longer has blue glacier ice extending past the arrow to the main glacier junction. The glacier has retreated 750 m from 1998-2014. The thinning of several tributaries is indicative of less volume flux toward the terminus, which will lead to continued retreat of this glacier and lake expansion. The retreat is similar to that of Durung Drung Glacier, India, Reqiang Glacier, China and Matsang Tsanpo Glacier, China and Ribuktse Glacier, China, which are in a similar climate setting. This area did get an unusual heavy October snowfall from Cyclone Hudhud this week.

yemaundrung 1998
1998 Landsat image
yematundrung  2000
2000 Landsat image
yemaundrung 2013
2013 Landsat imageyemayundrung 2014
2014 Landsat image

Himalayan Glacier Change Index

Himalaya Range Glacier Change Below is a list of individual glaciers in the Himalaya that illustrate what is happening glacier by glacier. In addition to the individual sample glaciers we tie the individual glaciers to the large scale changes of approximately 10,000 glaciers that have been examined in repeat satellite image inventories. In the Himalayan Range, stretching from the Karokaram Range in NW India east south east to the border region of Bhutan and China,  detailed glacier mapping inventories, from GLIMS: (Global Land Ice Measurements from Space), ICIMOD (International Centre for Integrated Mountain Development), ISRO ( Indian Space Research Organisation) and Chinese National Committee for International Association of Cryospheric Science (IACS) of thousands of glaciers have indicated increased strong thinning and area loss since 1990 throughout the the Himalayan Range. The inventories rely on repeat imagery from ASTER, Corona, Landsat, IKONOS and SPOT imagery. It is simply not possible to make observations on this number of glaciers in the field.  This is an update to the assessment by Pelto (2012) in the BAMS State of the Climate, which was the source of a Skeptical Science article as well

Kali Gandaki Headwaters, Nepal——–Ngozumpa Glacier, Nepal

Khumbu Glacier, Nepal ————         West Barun Glacier, Nepal 

Imja Glacier, Nepal ——–                       Nobuk Glacier, Nepal

Lumding Glacier, Nepal———-

Milam Glacier, India————                Samudra Tupa, India

Ratangrian Glacier, India———–       Khatling Glacier, India

Satopanth Glacier, India———-         Durung Drung Glacier, India

Gangotri Glacier, India————         Warwan Basin, India

Sara Umaga Glacier, India—–          Malana Glacier, India 

Jaonli Glacier, India——–                  Kalabaland Glacier, India  

Jaundhar Barak, India———–         Burphu Glacier, India

Changsang Glacier, Sikkim—–     Zemu Glacier, Sikkim 

South Lhonak Glacier, Sikkim——North Lhonak Glacier, Sikkim

Theri Kang Glacier, Bhutan———-Luggi Glacier, Bhutan

Mangde Chu Glacier, Bhutan——–Thorthormi Glacier, Bhutan

Menlung Glacier, Tibet———-       Yejyumaro Glacier, Tibet

Lumding Glacier, Tibet—-             Rongbuk Glacier, Tibet

Sepu Kangri, China———–          Longbasba Glacier, Tibet

Jiongla Glacier, Tibet———-        Bode Zanbo Headwaters, Tibet

Zayul Chu Headwaters, TibetBoshula Glaciers, Tibet

Matsang Tsanpo Gl, Tibet—–    Reqiang Glacier, Tibet 


In Garhwal Himalaya, India, of 58 glaciers examined from 1990-2006 area loss was 6% (Bhambri et al, 2011). They also noted the number of glaciers increased from 69 (1968) to 75 (2006) due to the disintegration of ice bodies. Examination of 466 glaciers in the Chenab, Parbati and Baspa Basin, India found a 21% decline in glacier area from 1962 to 2004 (Kulkarni, 2007). Glacier fragmentation was also observed in this study, which for some fragments represents a loss of the accumulation area, which means the glacier will not survive (Pelto, 2010). The India glacier inventory (ISRO, 2010) identified glacier area losses and frontal change on 2190 glaciers and found an area loss rate of 3.3% per decade and 76% of glaciers retreating. (Kulkarni, 2014) reports on Indian Himalyan glaciers  that 79 of 80 with terminus change records have been receding.

In the Nepal Himalaya area loss of 3808 glaciers from 1963-2009 is nearly 20% (Bajracharya et al., 2011). The Langtang sub-basin is a small northeast-southwest elongated basin, tributary of Trishuli River north of Kathmandu and bordered with China to the north. The basin contained 192 km2 of glacier area in 1977, 171 km2 in 1988, 152 km2 in 2000 and 142 km2 in 2009. In 32 years from 1977 to 2009 the glacier area declined by 26% (Bajracharya et al., 2011). In the Khumbu region, Nepal volume losses increased from an average of 320 mm/yr 1962-2002 to 790 mm/yr from 2002-2007, including area losses at the highest elevation on the glaciers (Bolch et al., 2011).  The Dudh Koshi basin is the largest glacierized basin in Nepal. It has 278 glaciers of which 40, amounting to 70% of the area, are valley-type. Almost all the glaciers are retreating at rates of 10–59 m/year and the rate has accelerated after 2001 (Bajracharya and Mool, 2009).  ICIMOD (2013) completed an inventory of Nepal glaciers and found a 21% decline in area from the 1970’s to 2007/08.  ICIMOD has developed an  map viewer application for examining the changes through time.

An inventory of 308 glaciers in the Nam Co Basin, Tibet, noted an increased loss of area for the 2001-2009 period, 6% area loss (Bolch et al., 2010). Zhou et al (2009) looking at the Nianchu River basin southern Tibet found a 5% area loss. 1990-2005. In the Pumqu Basin, Tibet an inventory of 999 glacier from the 1974 & 1983 to 2001 indicated the loss of 9% of the glacier area and 10% of the glaciers disappeared (Jin et al, 2005). The high elevation loss is also noted in Tibet on Naimona’nyi Glacier which has not retained accumulation even at 6000 meters. This indicates a lack of high altitude snow-ice gain (Kehrwald et al, 2008).

A new means of assessing glacier volume is GRACE, which cannot look at specific changes of individual glaciers or watersheds. In the high mountains of Central Asia GRACE imagery found mass losses of -264 mm/a for the 2003-2009 period (Matsuo and Heki, 2010). This result is in relative agreement with the other satellite image assessments, but is at odds with the recent global assessment from GRACE, that estimated Himalayan glacier losses at 10% of that found in the aforementioned examples for volume loss for the 2003-2010 period (Jacobs et al, 2012). At this point the detailed glacier by glacier inventories inventories of thousands of glaciers are better validated and illustrate the widespread significant loss in glacier area and volume, though not all glaciers are retreating. This page will continue to be updated as new inventory data is published and new individual glaciers are examined herein. Yao et al (2012) in an examination of Tibetan glaciers observed substantial losses of 7090 glaciers.  Bolch et al (2012) in a report on the “State and Fate of Himalayan Glaciers” noted that most Himalayan glacier are losing mass and retreating at rates similar to the rest of the globe.  ICIMOD has also developed an application illustrating changes of glaciers in Bhutan.

Yejyumaro Glacier Retreat Lake Expansion, Tibet, China

An unnamed glacier draining the west side of Yejyumaro Peak a Nepal-China border peak, into Tibet is referred to here as Yejyumaro Glacier. The glacier is at the headwaters of the Arun River, which crosses into Nepal at Kimathanka. A 335 MW hydropower plant is being planned for the Upper Arun River fed by this and other glaciers. The glacier is adjacent to Nobuk Glacier across the border in Nepal.nobuk tibet overview
Google Earth images from 2002 and 2013 indicate both the glacier retreat and resulting lake expansion. Red arrow is the 1989 terminus position and yellow arrow 2013 terminus position. Notice the southern and northern arms joining and turning west. Both arms of the glacier are fed by the steep border peaks with considerable avalanching.
Nobuk tibet 2002
20002 Google Earth image
Nobuk tibet 2013
2013 Google Earth image

Landsat imagery from 1989 to 2013 is used to illustrate the response of this glacier to changing climate. In 1989 the glacier extended down the unnamed lake to a peninsula, with the lake being 2.3 km long. By 2000 the glacier had retreated from the peninsula, 150-200 m retreat since 1989. By October 2013 the glacier had retreated 700 m from the 1989 position into a narrower section of the lake. The lake is now 3 km long and still growing. A December 2013 image indicates how dry this region is during the early part of the winter with only a light snowcover across the glaciated areas and higher terrain. The last image is a the Google Earth closeup indicating the transverse crevasses that are above the terminus, the crevasses narrow moving up glacier away from the terminus and disappear 400 m above the terminus. These represent the acceleration near the calving front and the indicate that calving has helped accelerate glacier flow and glacier loss. This glaciers retreat is similar to so many in the area from Nepal such as the Nobuk Glacier that is adjacent to it in Nepal, and the many Tibetan glacier retreating along the the axis of expanding lakes, Reqiang, Matsang Tsanpo and Menlung Glacier.

yejyuamro 1989
1989 Landsat image

yejyumaro 2000
2000 Landsat image

yejyumaro 2013a
2013 landsat image

yejyumaro 2013
2013 Landsat image

yejyumaro terminus
Google Earth closeup

Jiongla Glacier Retreat, Tibet, China

Jiongla Glacier is at the northern boundary of the .Brahmaputra River Basin.) at the east end of the Nyainqentanglha Shan. The glacier drains the western slopes of Koma Kangri Peak and ends in a lake before feeding into the Parlung Zangbo and then Yarlung Tsanpo. Ninglian and Shichang (2010) in the China National Report on Cryospheric Sciences noted a loss in glacier area of 15 to 17 % in the region. ICIMOD (2011) notes that the basin has 11, 500 glaciers covering an area of 14,000 square kilometers. Here we examine satellite imagery from 19988, 2000, 2009, 2010 and 2011. The pink arrow denotes the 1988 terminus and the yellow arrow the 2011 terminus. jiongla ge 2003
2003 Google Earth image

In 1988 the lake where Jiongla Glacier ends is at 4000 meters and is 2 km long. By 2000 the glacier has retreated 1300 meters. By 2009 the lake is 4 km long, a 2 km retreat in 20 years. The retreat from 2009 to 2011 is not evident in the satellite imagery used here. There are icebergs visible in the lake particularly in the 2003, 2009 and 2011 images indicating that this one a key reason for rapid recent retreat. In reviewing the satellite images for the region cloud cover made it difficult to find imagery near the end of the melt season. The 2011 image is from near the end of the melt season and indicates a snowline at 5150 m, green arrows, this is too high for equilibrium, with limited glacier area above 5500 m and the terminus at 4000 meters. This suggests that retreat will continue. The last image is a 2003 terminus closeup that indicates vigorous flow through an icefall, red arrow, 2 km behind the terminus. This indicates the lake will end before this point and the glacier does not have a substantial stagnant terminus tongue. This also suggests the rate of retreat will soon slow. The retreat here is similar to that of Sepu Kangri Glacier and Requiang Glacier. This glacier feeds the Parlung Zangbo which is the site of numerous planned hydropower projects, last image, . before joining the Yarlung Tsanpo which becomes the Brahmaputra Riverjiongla1988
Landsat image 1988

jiongla2000Landsat image 2000

jiongla 2009 Landsat image 2009

jiongla 2010Landsat image 2010

jiongla 2011Landsat image 2011

jiongla terminusYarlung Tsangpo HPP

Sepu Kangri Glacier Retreat, Tibet, China

There are two glaciers that drain the north side of Sepu Kangri Peak in the Eastern Nyainqêntanglha Mountains of Tibet in China. Most of the peaks in East Nyainqêntanglha Mountains are unclimbed, Sepu Kangri the highest peak was not climbed until 2002. The Sepu Kangri Glaciers drain into thw Salween River. sepu kangri profile
In a recent study by Tobias Bolch et al (2010) in the western Nyainqêntanglha Mountains glacier area decreased by −6% between 1976 and 2001 and continued to shrink during the period 2001–2009. Li et al (2010) examined glacier change over the last several decades in China and found ubiquitous glacier retreat and commonly lake formation as glaciers retreated. In this case we compare Landsat images from 1988, 2003 and 2010 and Google Earth images from 2011. In 1988 the lakes at the end of the two glaciers are indicated by pink arrows form the main terminus the eastern glacier, and black arrow for the smaller western glacier. By 2003 there is limited terminus change for the main terminus. The western terminus has retreated 200 meters. By 2010 the terminus tongue is breaking up for the eastern glacier terminus. By 2011 the lake has expanded from a length of 600 meters in 1998 and 1300 meters in 2011. The western terminus has retreated another 100 meters. A closeup view in Google Earth of the eastern tongue indicates that this lake will quickly develop to an area of 1.7 km long and 0.8 km wide. Notice all of the icebergs in the lake. This glacier remains heavily crevassed and has a vigorous accumulation zone indicating that it is not in danger of disappearing with current climate.sepu kangri 1988

sepu kangri 2003

sepu kangri 2010

sepu kangri ge

sepu kangri tongue
The formation of lakes at the end of the glaciers is quite common. If we look 10 km east of Supa Kangri are two more developing lakes that we will focus upon later. All of the lakes are in the 4700 and 4800 meter elevation range. The lakes are also common features of retreat in the main Himalayan range for retreating Tibetan glaciers, Reqiang Glacierand Menlung Glacier
sepu kangri east

Matsang Tsanpo Glacier Retreat, Tibet

The glacier retreat of the entire region of southwest China has been rapid and extensive(Li et al, 2011). This post focuses on an unnamed glacier, in the Matsang Tsanpo basin, Sun Khosi River in Nepal, at 28 18 N and 86 10 E. The glacier is located just 10 km east of the Friendship Highway which extends from Kathmandu, Nepal to Lhasa, Tibet. This glacier is north of Nyalam, which translates to Gates of Hell. Analysis is of Landsat imagery from 2000, 2009 and 2011 and Google Earth Imagery from 2011. The Sun Khosi has one major 10.5 MW hydropower station. The second image is the Google Earth image, the green arrow is the current terminus, the orange arrow the 2000 terminus at the edge of the lake, the purple arrows the lateral moraines from the Little Ice Age and the red arrow the Little Ice Age end moraine. . The glacier retreat from 2000 to 2011 is 240 meters. In the Landsat images the orange arrow indicates the 2000 terminus and the green arrows the 2009 and 2011 terminus in their respective images. The last image illustrates fluted moraine to the right of glacier terminus at the red arrow and the purple arrows indicate deep river channels in the glacier surface. The river channels would not be that deep if the glacier was not stagnant near its terminus. The retreat of this glacier is similar to that of other glaciers in the area such as Reqiang Glacier and Menlung Galcier. Jin et al (2005) noted that glaciers in the adjacent Pumqu River Basin of southern Tibet were in rapid retreat. This is the dominant response of the high mountain glaciers of central Asia.